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Definition	of Image	Understanding

• "scene": section of the real	world
– stationary (3D)	or
– moving (4D)

• "image": view of a	scene
– projection,	 density image (2D)
– depth image (2	1/2D)
– image sequence (3D)

• "reconstruction and interpretation“:	computer-internal scenedescription
– Quantitative
– Qualitative
– Symbolic

• "task-oriented": for a	purpose,	to fulfil a	particular task
– context-dependent,	
– supporting actions of an	agent

IP1:	A	walk through the lecture series from Lecture 3:	 Image	Understanding	and Image	Formation

Image	understanding is the task-oriented reconstruction
and interpretation of a	scene bymeans of images
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Different	colors are described by Hue (H),	
Saturation	(S),	and Intensity (I).	Can	be derived
from RGB	model:

Closer to human	perception

Better choice e.g.	for selecting colors!

Computer	Vision	Colour Models

Different	colors are generated by adding
different	portions of red (R),	green (G),	and
blue (B).

RGB	is the most commonly used color space
in	Computer	Vision.

Typical discretization:

8	bits per	colour dimension

à 16.777.216	colours

IP1:	A	walk through the lecture series from Lecture 3:	 Image	Understanding	and Image	Formation
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Sampling	Theorem

Shannon´s Sampling	Theorem:

A	bandlimited	functionwith bandwidthW can be exactly
reconstructed fromequally spaced samples,	if the sampling

distance is not	larger	than .

Bandwidth =	largest frequency contained in	signal
(=>	Fourier	decomposition of a	signal)

Analogous theorem holds for 2D	signals with limited	spatial
frequencies Wx and Wy

IP1:	A	walk through the lecture series from Lecture 3:	 Image	Understanding	and Image	Formation
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Perspective Projection Geometry

Projective geometry relates the coordinatesof a	point in	a	scene to the
coordinates of its projection onto an	image plane.

Perspective projection is an	adequatemodel formost cameras.

IP1:	A	walk through the lecture series from Lecture 5:	Perspective Transformations and Interpolation
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Connectivity	in	Digital	Images
Connectivity	is an	importantproperty of subsets of pixels.	It is based on	
adjacency (or neighbourhood):

A	path from pixel P	to pixel Q	is a	sequence of pixels beginningat Q	and
endingat P,	where consecutive pixels are neighbours.

In	a	set of pixels,	two pixels P	and Q	are connected,	if there is a	path between
P	andQ	with pixels belonging to the set.

A	region is a	set of pixelswhere each pair	of pixels is connected.

IP1:	A	walk through the lecture series from Lecture 5:	Perspective Transformations and Interpolation

Pixels	are 4-neighbours	 if
their distance is D4 =	1

Pixels	are	8-neighbours	 if	
their	distance	is	D8 =	1

all	4-neighbours	of	
center	pixel

all	8-neighbours	of	
center	pixel
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Principle of Greyvalue Interpolation

Two ways of viewing interpolation in	the context of geometric
transformations:
A) Greyvalues at grid locations (x	y)	in	old image are placed at

corresponding locations (x´y´)	in	new image:	g(x´y´)	=	g(T(x	y))
à interpolation in	new image

B) Grid locations (u´v´)	in	new image are transformed into corresponding
locations (u v)	in	old image:	g(u v)	=	g(T-1(u´v´))
à interpolation in	old image

We will	take view B:	
Compute greyvalues between grid from greyvalues at grid locations.

IP1:	A	walk through the lecture series from Lecture 5:	Perspective Transformations and Interpolation
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Greyvalue interpolation =	computation of unknown
greyvalues at locations (u´v´)	from known greyvalues
at locations (x´y´)
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Global	Image	Properties

Global	image properties refer to an	image as a	whole rather
than components.	Computation of global	image properties
is often required for image enhancement,	preceding image
analysis.
We treat

– empiricalmean and variance
– histograms
– projections
– cross-sections
– frequency spectrum

IP1:	A	walk through the lecture series from Lecture 6:	 Image	Properties	and Filters
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Median	Filter
Median	of a	distributionP(x):			xm such	thatP(x < xm) = 1/2

Median	Filter:
1.	Sort pixels in	D according to greyvalue
2.	Choose greyvalue in	middle position

Example:

IP1:	A	walk through the lecture series from Lecture 6:	 Image	Properties	and Filters

ĝij =  max a( )  with gk ∈ D   and {gk < a} <
D
2
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greyvalue of center pixel of
region is set to 15

Median	Filter	 reduces influence of outliers in	either direction!
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Discrete Fourier	Transform	(DFT)
Computes image representationas a	sum of sinusoidals.

Notation	for computing the Fourier	Transform:

Transform	is based on	periodicity
assumption!
à periodic continuationmay

cause boundaryeffects

IP1:	A	walk through the lecture series from Lecture 7:	Spectral Image	Processing	and Convolution
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Filtering in the Frequency Domain
A	filter transforms a	signal by modifying its spectrum.

G(u, v) = F(u, v) H(u, v)

F Fourier	transform of the signal
H frequency transfer function of the filter
G modified Fourier	transform of signal

Typical filters:
– low-pass	filter low frequencies pass,	high	frequencies are

attenuated or removed
– high-pass	filter high	frequencies pass,	 low frequencies are

attenuated or removed
– band-pass	filter frequencies within a	frequency band	pass,	

other frequencies below or above are
attenuated or removed

Often (but	not	always)	the noise part of an	image is high-frequency and the signal part
is low-frequency.	Low-pass	filtering then improves the signal-to-noise ratio.

IP1:	A	walk through the lecture series from Lecture 7:	Spectral Image	Processing	and Convolution
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Discrete Convolution Using the FFT

Convolution in	the spatial domainmaybe performedmoreefficiently
using the FFT.

Using the FFT	and filtering in	the frequencydomain:

Examplewith M = N = 512:
– straight convolutionneeds ~	1010 operations
– convolution using the FFT	needs ~107	operations

12

IP1:	A	walk through the lecture series from Lecture 7:	Spectral Image	Processing	and Convolution

(MN)2 operations needed
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Illustration	of Minimum-loss
Dimension	Reduction

Using the Karhunen-Loève transform,	data compression is achieved by
• changing (rotating)	 the coordinate system
• omitting the least	informative	dimension(s)	 in	the new coodinate system
Example:

13

IP1:	A	walk through the lecture series from Lecture 8:	 Image	compression1
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Principle	of	Baseline	JPEG

14

IP1:	A	walk through the lecture series from Lecture 9:	 Image	compression2

FDCT Quantizer Entropy	Encoder

Encoder

table
specifications

table
specifications

8	x	8	blocks

source	image	
data

compressed	
image	data

(Source: Gibson et al., Digital Compression for Multimedia, Morgan Kaufmann 98)

• transform RGB	into YUV	coding,	 subsample	color information
• partition image into 8	x	8	blocks,	left-to-right,	 top-to-bottom
• compute Discrete Cosine Transform	(DCT)	of each block
• quantize coefficients according to psychovisual quantization tables
• order DCT	coefficients in	zigzag order
• perform runlength coding of bitstream of all	coefficients of a	block
• perform Huffman coding for symbols formed by bit patterns of a	block	
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Segmentation

IP1:	A	walk through the lecture series from Lecture 10:	 Image	Segmentation	1

Segmenting the image into image elements which may correspond tomeaningful
scene elements

high-level	interpretations

objects

scene	elements

image	elements

raw images

Typical	results	of	
first	segmentation	
steps

Example:
Partitioning an	
image into regions
which may
correspond to
objects
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Representing	Regions
A	region is a	maximal	4- (or 8-)	connected set of pixels.	

Note	that discretizations of an	analog	region are not	shift or rotation invariant:

16

IP1:	A	walk through the lecture series from Lecture 10:	 Image	Segmentation	1

Methods for digital	region representation:
• grid occupancy

- labelling
- run-length coding
- quadtree coding
- cell sets

• boundary description
- chain code
- straight-line segments,	polygons
- higher-order	polynomials

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •
• • • •
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Component	Labelling
Determining connected regions in B/W images

17

IP1:	A	walk through the lecture series from Lecture 10:	 Image	Segmentation	1

Component 1 Component 2
(2	3	9)(3	3	7)(4	6	6) (4	12	12)
Component 3
(5	13	13)(6	9	14)(7	9	9	14	14)(8	9	9	14	14)(9	9	9	14	14)
Component 4
(9	0	0)(10	0	0)(11	0	3)(12	0	0	3	3)(13	0	0	3	3)(14	0	0	3	3)
Component 5
(9	5	6	12	12)(10	 6	6	11	12)(11	 6	11)

Component labelling of B/W	imageswith 4-neighbourhood
Scan	image left to right,	top	to bottom:

if pixel is white then continue
if pixel is black then

if left neighbour is white and upper neighbour is white then assign new label
if left neighbour is black and upper neighbour is white then assign left label
if left neighbour is white and upper neighbour is black then assign upper label
if left neighbour is black and upper neighbour is black then

assign left label,	merge left label and upper label

In	this example:
component
descriptions using
run-length coding
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Chain	Code

18

IP1:	A	walk through the lecture series from Lecture 10:	 Image	Segmentation	1

Chain	code represents boundaries by "chaining"	direction arrows between successive
boundary elements.	

0
1

23
4

5
6 7

Arbitrary choice of starting point,	 chain code
can be represented e.g.	by

{456671123}
Normalization by circular shift until the
smallest integer	is obtained:

{112345667}

Chain	code for 8-connectivity:

Chain	code for 4-connectivity:

0

1

2

3

Arbitrary starting point:
{22233330010111}
Normalized:

{00101112223333}
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Canny Edge	Detector I

1. Derivation	for 1D	results in	edge detection filter which can be effectively
approximated (<	20%	error)	by the 1st	derivative	of a	Gaussian smoothing filter.

2. Generalization to 2D	requires estimation of edge orientation:

Edge	is located at local maximum of g convolved with f in	direction :

19

IP1:	A	walk through the lecture series from Lecture 11	– Image	Segmentation	2

Optimal	edge detector for step edges corrupted by white noise.

Optimality criteria:
• Detection of all	important edges and no spurious responses
• Minimal	distance between location of edge and actual edge
• One response per	edge only

!n = ∇( f *g)
∇( f *g)

normal	perpendicular to edge
f Gaussian smoothing filter
g greyvalue image

∂ 2

∂
!n2
f *g = 0 "non-maximal	suppression"

!n

!n
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Canny Edge	Detector II

Algorithm includes
– choice of scale σ
– hysteresis thresholding to avoid streaking (breaking up edges)
– "feature synthesis"	by selecting large-scale edges

dependent on	 lower-scale support

20

IP1:	A	walk through the lecture series from Lecture 11	– Image	Segmentation	2

1. Convolve image g with Gaussian filter f of scale σ
2. Estimate local edge normal	direction γ for each point in	the image
3. Find	edge locations usingnon-maximal	suppression
4. Computemagnitudeof edges
5. Threshold edgeswith hysteresis to eliminate spurious edges
6. Repeat	steps (1)	through (5)	for increasingvalues ofσ
7. Aggregate	edges at multiple	scales using feature synthesis
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Grouping

Example:		Grouping noisy edge elements into a	straight edge

Essential	problem:
Obtaining globally valid	results by local decisions

Important methods:

• Fitting
• Clustering
• Hough	Transform
• Relaxation

21

IP1:	A	walk through the lecture series from Lecture 12:	Grouping and Searching

To make sense	of image elements,	
they first have to be grouped into larger	structures.

- locally	compatible
- globally	 incompatible
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Example	for	Straight	Line	Fitting	by	
Eigenvector	Analysis

Given points:	{ (-5 0) (-3 0) (-1 -1) (1 0) (3 2) (5 3) (7 2) (9 2) }
Center	of gravity:		 mx = 2 my = 1
Scatter matrix:	 S11 = 168 , S12 = S21 = 38 , S22 = 14
Eigenvalues:  λ1 = 176.87 ,  λ2 = 5.13
Direction of straight line:		 ry/rx = 0.23
Straight	line equation:	 y = 0.23 x + 0.54

22

IP1:	A	walk through the lecture series from Lecture 12:	Grouping and Searching

•
•

•
•

•
• •

• x

y

What is the best straight-line
approximation of the contour?

?

•
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Hough	Transform	I

23

IP1:	A	walk through the lecture series from Lecture 13:	Grouping and Shape	Features

Robust	method for fitting straight lines,	circles or other geometric figureswhich can
be described analytically.

Given:	 Edge	points in	an	image
Wanted: Straight	lines supported by the edge points

An	edge point (xk, yk) supports all straight lines y = mx + c with
parameters m and c	such	that yk = mxk + c.
The	locus of the parameter combinations for straight lines through
(xk, yk) is a	straight line in	parameter space.

m

c

yk/xk

yk

• Provide accumulator array for quantized straight line parameter combinations
• For each edge point,	 increase accumulator cells for all	parameter combinations

supported by the edge point
• Maxima	in	accumulator array correspond to straight lines in	the image

Principle of Hough	transform for straight line fitting:
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Hough	Transform	II

24

IP1:	A	walk through the lecture series from Lecture 13:	Grouping and Shape	Features

For straight line finding,	 the parameter pair	(r,	γ)	is commonly used because it avoids
infinite	parameter values:	

xk cos(γ) + yk sin(γ) = r x
r

γ

(xk, yk)

x

y

Eachedge point (xk, yk) corresponds to a	
sinusoidal in	parameter space:

π 2π
γ

r

Important improvement by exploiting direction information at edge points:	
(xk, yk, φ) xk cos(γ) + yk sin(γ) = r restricted to φ-δ ≤ γ ≤ φ+δ

direction tolerancegradient direction
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Simple	2D	Shape	Features

In	such	cases simple	2D	shape features may be useful,	 such	as:
• area
• boxing rectangle
• boundary length
• compactness
• second-order	momentums
• polar	signature
• templates
Features	may or may not	have invariance properties:
• 2D	translation invariance
• 2D	rotation invariance
• scale invariance

25

IP1:	A	walk through the lecture series from Lecture 13:	Grouping and Shape	Features

For industrial recognition tasks it is often required to distinguish
• a	small numberof different	shapes
• viewed from a	small numberof different	view points
• with a	small computational effort.
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Basic	Terminology for Pattern	Recognition

26

IP1:	A	walk through the lecture series from Lecture 15:	Pattern	Recognition

feature	extraction

feature	vector

object

classification	in
feature	space

object	class

K
N
!xT = x1  x2  ... xN( )
!yT = y1  y2  ... yN( )
!yi
(k )

Mk

gk
!x( )

classes ω1 ...	ωK

dimension of feature space

feature vector

prototype	 (feature vector with
known class membership)

i-th prototyp of class k

number of prototypes for class k

discriminant function for class k

Problem:	Determine such	that

∀!x∈ωk

∀
k≠ j
gk
!x( ) > gj

!x( )

gk
!x( )
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Perceptron Learning	Rule
A	solution vector a	can be determined iteratively byminimizinga	criterion
function by gradient descent.
Perceptron criterion function:

with B = {all	misclassified prototypes}

Basic	gradient descent algorithm:

Gradient:			

Step:

Weight vector is modified in	negative
gradient direction!

27

IP1:	A	walk through the lecture series from Lecture 15:	Pattern	Recognition

iterations viewed in	weight space

Example (see illustration)	with:

a0

a1

o

o

k 0 1 2 3 4 5 6 7 8
0 2 0 2 0 2 4 2 4
1 -1 3 1 5 3 1 5 3

•

•

••

•

•

•

•

•

solution

Jp(
!a) = −

!aT !y( )
y∈B
∑

∇Jp(
!a) = −

!y( )
y∈B
∑

!ak+1 =
!ak + ρk

!y( )
y∈B
∑

!a

J(!a)

!y (1)

!y (2)

!y1 = −1  2( )T  ,  
!y2 = −1  1( )T  ,  ρ = 2

!ak
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Statistical	Decision Theory

Advantages:
1. The	classification schememaybe designed to satisfy an	objective

optimality criterion:	
Optimal	decisionsminimize the probability of error.

2. Statistical	descriptionsmaybemuch more compact than a	collection of
prototypes.

3. Some phenomenamayonly be adequately described using statistics,	e.g.	
noise.

28

IP1:	A	walk through the lecture series from Lecture 16:	Decision Theory

Generating	decision functions from a	statistical characterization of classes
(as opposed to a	characterization by prototypes)
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General	Framework	for Bayes Classification

K classes
prior probability that an	object of class kwill	be observed

N-dimensional	feature vector of an	object

conditional probability ("likelihood")	of observing given that the object
belongs to classωK

conditional probability ("posterior probability")	that an	object belongs to
classωK given is observed

29

IP1:	A	walk through the lecture series from Lecture 16:	Decision Theory

Statistical	decision theoryminimizes the probabilityof error for
classifications based on	uncertain evidence

Bayes decision rule:
Classify given evidence as classω´ such	that ω´ minimizes the probability of error

à Choose ω´ which maximizes the posterior probability
are discriminant functions.	

ω1...ωK

P(ωk )
!xT = x1... xN( )
p !x ωk( )
P ωk

!x( )

!x

!x

!x
P ω ≠ "ω

!x( )
P ω

!x( )
gi
!x( ) = P ωi

!x( )
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Motion	Analysis
Motion	analysis of digital	images is based on	a	temporal	sequence of image
frames of a	coherent scene.

"sparse sequence"	 		à few frames,	temporally spaced apart,	
considerable differences between frames

"dense sequence"	 				à many frames,	incremental time	steps,
incremental differences between frames

video à 50	half	frames per	sec,	interleaving,	
line-by-line sampling

Motion	detection
Register	locations in	an	image sequence which have changed due	to motion

Moving object detection and tracking
Detect individual	moving objects,	determine and predict object trajectories,	track
objects with a	moving camera

Derivation	of 3D	object properties
Determine 3D	object shape from multiple	views ("shape from motion")

30

IP1:	A	walk through the lecture series from Lecture 17:	Motion	Analysis	1
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Optical	Flow	Constraint	Equation

Assumptions:
• Observed brightness is constant over time (no illumination changes)
• Nearby image points move similarly (velocity smoothness constraint)

For a	continuous image g(x, y, t) a	linear	Taylor	series approximation gives
with:

For motion without illumination change we have

Hence

31

IP1:	A	walk through the lecture series from Lecture 17:	Motion	Analysis	1

Optical	flow is the displacement field of surface elements of a	scene during an	
incremental time	interval dt ("velocity field").

gx ≈ Δg/Δx,  gy ≈ Δg/Δy,  gt ≈ Δg/Δt maybe estimated from the spatial and temporal	
surround of a	location (x, y),	hence the optical flow constraint equation provides one
equation for the two unknowns u and v.	

g(x + dx,  y+ dy,  t + dt) ≈  g(x,  y,  t) +  gxdx  +  gydy +  gtdt  =  0 ∇Tg =  gx  gy  gt( )

g(x + dx,  y+ dy,  t + dt) =  g(x,  y,  t)

dx
dt
gx +

dy
dt
gy = gxu+ gyv = −gt Optical	Flow	Constraint Equation (OFCE)

with:	u,	v	velocity components
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3D	Motion	Analysis	Based	on	
2D	Point	Displacements

32

IP1:	A	walk through the lecture series from Lecture 18:	Motion	Analysis	2

2D	displacements of points
observed on	an	unknown
moving rigid	bodymay provide
informationabout
• the 3D	structure of the points
• the 3D	motion parameters

Cases	of interest:
• stationary camera,	moving object(s)
• moving camera,	stationary object(s)
• moving camera,	moving object(s)

cameramotion parameters
may be known

Rotating cylinder experiment
by S.	Ullman	(1981)
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Essential	Matrix

33

IP1:	A	walk through the lecture series from Lecture 18:	Motion	Analysis	2

Geometrical constraints derived from2	views of a	point in	motion

and are coplanar:

After	somemanipulation:	 E = essential	matrix

with and

z

x

y

• 
•

Rm

•
!nm+1

!nm

!vm !vm+1
!
tm

• motion between image m and m+1 may be
decomposed into

1. rotation Rm about origin of coordinate
system (=	optical center)

2. translation
• observations are given by direction vectors

and along projection rays.

!
tm

!nm
!nm+1

Rm
!nm, 
!
tm

!nm+1
!
tm ×Rm

!nm( )T !nm+1 = 0
!nmEmnm+1 = 0

Em =
| | |!

tm ×
!r1
!
tm ×
!r2
!
tm ×
!r3

| | |

"

#

$
$
$

%

&

'
'
'

Rm =
| | |
!r1
!r2
!r3

| | |

!

"

#
#
#

$

%

&
&
&
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Generality	Assumption

34

IP1:	A	walk through the lecture series from Lecture 19:	Camera Geometry and 3D	 Image	Analysis

Assume that
- viewpoint
- illumination
- physical surface properties

are all	general,	i.e.	do	not	produce coincidental structures in	the image.

Example:		
Do	not	 interpret this figure as a	3D	
wireframe cube,	because this view
is not	general.

General	
view:

The	generality assumption is the basis for several specialized interpretation
methods,	e.g.

- shape from texture
- shape from shading
...
- "shape from X"	
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3D	Line	Orientation	from	
Vanishing	Points

35

IP1:	A	walk through the lecture series from Lecture 19:	Camera Geometry and 3D	 Image	Analysis

From the laws of perspective
projection:
The	projections of 3D	parallel	
straight lines intersect in	a	single
point,	the vanishingpoint.	

Assume thatmore than 2	straight
lines do	not	intersect in	a	single
point by coincidence

If more than 2	straight lines
intersect,	assume that they are
parallel	in	3D
28.01.16 University of Hamburg, Dept. Informatics



Principle	of	Shape	from	Shading

36

IP1:	A	walk through the lecture series from Lecture 20:	Shape	from Shading

Physical surface properties,	 surface orientation,	 illumination and viewing direction
determine the greyvalue of a	surface patch in	a	sensor signal.

For a	single object surface viewed in	one image,	greyvalue changes are mainly caused
by surface orientation changes.
The	reconstruction of arbitrary surface shapes is not	possible because different	
surface orientations may give rise to identical greyvalues.
Surface shapes may be uniquely reconstructed from shading information if possible
surface shapes are constrained by smoothness assumptions.

See	"Shape	from Shading"	(B.K.P.	Horn,	M.J.	Brooks,	eds.),	MIT	Press	1989

a:	 patch with known orientation
b, c:	 neighbouring patches with similar orientations
b´: radical different	orientationmay not	be neighbour of a

Principle of incremental procedure for surface shape reconstruction:

a
b

c
b´
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Object	Recognition	by	
Relational	Matching

Principle:
– construct relational model(s) for object class(es)

– construct relational image description

– compute R-morphism (best partial match) between image and model(s)

– top-down verification with extended model
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IP1:	A	walk through the lecture series from Lecture 21:	Object Recognition	1
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SIFT	Method
David	G.	Lowe:	Distinctive Image	Features	from Scale-Invariant	Keypoints
International	Journal	of Computer	Vision,	2004	(Protected by US	patent)

Lowe	developed specific methods for:

1. Determining invariant	local descriptors at	interest points

• finding stable interest points ("keypoints")

• computing largely scale-invariant	features at	interest points

2. Extracting stabledescriptors for object models

3. Finding and recognizingobjects based on	local descriptors
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IP1:	A	walk through the lecture series from Lecture 22:	Object Recognition	2
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Basic	Building	Blocks	for	
High-level	Scene	Interpretation

39

IP1:	A	walk through the lecture series from Lecture 23:	High	Level	Vision

geometrical
scene	description	(GSD)

image sequences of dynamic scenes

high-level	
scene	interpretations

scene	models

vision	memory

memory	templatescontext
information
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Occurrence	Models

• An	occurrence model describes a	class of occurrences by:
– properties
– sub-occurrences (=	components of the occurrence)
– relations between sub-occurrences

• A	primitive	occurrence model consists of
– properties
– a	qualitative	predicate

• Each occurrence has a	begin and end	time	point
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IP1:	A	walk through the lecture series from Lecture 23:	High	Level	Vision

Basic	ingredients: • relational	structure
• taxonomy
• partonomy
• spatial relational	language
• temporal	relational	language
• object appearance models
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Basic	Interpretation	Algorithm
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IP1:	A	walk through the lecture series from Lecture 23:	High	Level	Vision

Enter	context information
Repeat

Check	for goal completion
Check	for new evidence
Determine possible interpretation steps and update	agenda
Select	from agenda one of

{		evidence matching,
aggregate instantiation,
aggregate expansion,
instance specialization,
parameterization,
constraint propagation }

Check	for conflict
end

Conflict =	unsatisfiable constraint net

àneed for backtracking or parallel	alternative	threads
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